15 research outputs found

    Vacuum compatible sample positioning device for matrix assisted laser desorptionionization Fourier transform ion cyclotron resonance mass spectrometry imaging

    No full text
    The high mass accuracy and resolving power of Fourier transform ion cyclotron resonance mass spectrometers (FT-ICR MS) make them ideal mass detectors for mass spectrometry imaging (MSI), promising to provide unmatched molecular resolution capabilities. The intrinsic low tolerance of FT-ICR MS to RF interference, however, along with typically vertical positioning of the sample, and MSI acquisition speed requirements present numerous engineering challenges in creating robotics capable of achieving the spatial resolution to match. This work discusses a two-dimensional positioning stage designed to address these issues. The stage is capable of operating in 1 10 -8 mbar vacuum. The range of motion is set to 100 mm 100 mm to accommodate large samples, while the positioning accuracy is demonstrated to be less than 0.4 micron in both directions under vertical load over the entire range. This device was integrated into three different matrix assisted laser desorptionionization ( MALDI) FT-ICR instruments and showed no detectable RF noise. The oversampling MALDI-MSI experiments, under which the sample is completely ablated at each position, followed by the target movement of the distance smaller than the laser beam, conducted on the custom-built 7T FT-ICR MS demonstrate the stability and positional accuracy of the stage robotics which delivers high spatial resolution mass spectral images at a fraction of the laser spot diameter

    Expanding Orbitrap collision cross section measurements to native protein applications through kinetic energy and signal decay analysis

    No full text
    The measurement of collision cross sections (CCS) offers supplemental information about sizes and conformations of ions beyond mass analysis alone. We have previously shown that CCSs can be determined directly from the time-domain transient decay of ions in an Orbitrap mass analyzer as ions oscillate around the central electrode and collide with neutral gas, thus removing them from the ion packet. Herein, we develop the soft sphere collision model, thus deviating from prior FT-MS CCS hard sphere model, to determine CCSs as a function of center-of-mass collision energy in the Orbitrap analyzer. With this model, we aim to increase the upper mass limit of CCS measurement for native-like proteins, characterized by low charge states and presumed to be in more compact conformations. We also combine CCS measurements with collision inducing unfolding and MS/MS experiments to monitor protein unfolding and disassembly of protein complexes and measure CCSs of ejected monomers from protein complexes
    corecore